Motives and Motivic L-functions
نویسنده
چکیده
This report aims to be an exposition of the theory of L-functions from the motivic point of view. The classical theory of pure motives provides a category consisting of ‘universal cohomology theories’ for smooth projective varieties defined over – for instance – number fields. Attached to every motive we can define a function which is holomorphic on a subdomain of C which at least conjecturally satisfies similar properties to the Riemann zeta function: for instance meromorphic continuation and functional equation. The properties of this function are expected to encode deep arithmetic properties of the underlying variety. In particular, we will discuss a conjecture of Deligne and its more general forms due to Beilinson and others, that relates certain “special” values of the L-function – values at integer points – to a subtle arithmetic invariant called the regulator, vastly generalising the analytic class number formula. Finally I aim to describe potentially fruitful ways in which these exciting conjectures might be rephrased or reinterpreted, at least to make things clearer to me.
منابع مشابه
Algebraic K-theory and Special Values of L-functions: Beilinson’s Conjectures. (talk Notes)
1. Classical motivation 2 1.1. Some classical identities 2 1.2. Riemann’s zeta function 2 1.3. Dedekind zeta functions 3 1.4. Higher regulators 4 2. Motivic L-functions 4 2.1. Realizations of motives 4 2.2. L-functions 6 3. Beilinson’s conjectures on special values of L-functions 7 3.1. Elementary reduction 7 3.2. The regulator map 8 3.3. The conjectures 8 3.4. Known cases 9 4. Motivic cohomolo...
متن کاملRatios of Periods for Tensor Product Motives
In this paper, we prove some period relations for the ratio of Deligne’s periods for certain tensor product motives. These period relations give a motivic interpretation for certain algebraicity results for ratios of successive critical values for Rankin–Selberg L-functions for GLn × GLn′ proved by Günter Harder and the second author.
متن کاملAn Introduction to Motivic Zeta Functions of Motives
It oftens occurs that Taylor coefficients of (dimensionally regularized) Feynman amplitudes I with rational parameters, expanded at an integral dimension D = D0, are not only periods (Belkale, Brosnan, Bogner, Weinzierl) but actually multiple zeta values (Broadhurst, Kreimer). In order to determine, at least heuristically, whether this is the case in concrete instances, the philosophy of motive...
متن کاملOrbital Integrals Are Motivic
This article shows that under general conditions, p-adic orbital integrals of definable functions are represented by virtual Chow motives. This gives an explicit example of the philosophy of Denef and Loeser, which predicts that all “naturally occurring” p-adic integrals are motivic.
متن کاملThe slice filtration and mixed Tate motives
Using the ”slice filtration”, defined by effectivity conditions on Voevodsky’s triangulated motives, we define spectral sequences converging to their motivic cohomology and étale motivic cohomology. These spectral sequences are particularly interesting in the case of mixed Tate motives as their E2-terms then have a simple description. In particular this yields spectral sequences converging to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012